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Control of a Flexible Space Robot Executing a
Docking Maneuver

Y. Chen* and L. Meirovitch'
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

This paper is concerned with a flexible space robot executing a docking maneuver with a target whose motion
is not known a priori. The dynamical equations of the space robot are first derived by means of Lagrange’s
equations and then separated into two sets of equations suitable for rigid-body maneuver and vibration suppression
control. For the rigid-body maneuver, on-line feedback tracking control is carried out by means of an algorithm
based on Lyapunov-like methodology and using on-line measurements of the target motion. For the vibration
suppression, LQR feedback control in conjunction with disturbance compensation is carried out by means of
collocated sensor/actuator pairs dispersed along the flexible arms. Problems related to the digital implementation
of the control algorithms, such as the bursting phenomenon and system instability, are discussed and a modified
discrete-time control scheme is developed. A numerical example demonstrates the control algorithms.

I. Imtroduction

OME of the functions of a space robot are to deploy or retrieve
free-flying payloads and to service orbiting spacecraft. Under
consideration is a robot with long flexible arms, such as in the case
of the remote manipulator in the Space Shuttle. An example of
such a space robot is shown in Fig. 1. The robot consists of a rigid
base, two flexible arms attached to the base in series, and an end
effector/payload. To carry out the mission described, the space robot
must have its own control system enabling the platform to translate
and rotate and its arms to rotate. In this paper, the target motion
is assumed not to be known a priori, so that the control permitting
the space robot to execute the docking maneuver must be based on
on-line measurements.
The equations governing the behavior of space robots are non-
linear and can be expressed in the general form of the state and
output equations

X =f(x,u) (1a)

y=gkx) (1b)

respectively, where x is the state vector, u is the control force vec-
tor, and y is the output vector, usually defined as the position and
orientation variables of the end effector. The target output vector
y; is defined as the position and orientation variables of the target.
We can then define the error vector as e = y, — y. The problem
reduces to that of designing a control law u(¢) so that e and its time
derivative ¢ are driven to zero.

There are two significant differences between industrial robots in
current use and space robots considered here. In the first place, in-
dustrial robots are mounted on a fixed base, whereas space robots are
mounted on space platforms capable of translations and rotations.
The second significant difference is that space robots must be very
light, and hence very flexible, unlike industrial robots characterized
by very bulky and stiff arms. The flexibility of the robot arms causes
elastic vibration, which tends to affect adversely the performance
of the end effector. Both a floating platform and flexibility are being
considered in this paper.

In the case of space-based robots, research has been carried out on
the assumption that the platform floats freely,'~% i.e., that there are
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no external forces and torques acting on the system, which implies
that the system linear and angular momenta are conserved. Whereas
these assumptions can be justified for a free-flying robot, they are
unrealistic in the case of a space robot attempting to intercept and
dock with a moving target.

The most commonly used approach to robotics can be described as
follows: First, inverse kinematics is performed to obtain the desired
robot configuration trajectory g,(t) from the desired end-effector
trajectory y,(¢). Then, using the system equations of motion, in-
verse dynamics is performed to obtain the control force realizing
q4(t). If the target motion is known a priori, the end effector’s tra-
jectory, as well as the robot trajectory, can be determined by an off-
line planning algorithm. For a kinematically redundant robot, such
as the one considered here, the robot redundancy can be used to
achieve optimality.’

If the target motion is not known a priori, planning is impossi-
ble. Even when the target motion is known, it is very likely that
some unexpected disturbance can cause errors. In view of this, on-
line feedback control for the tracking problem, whereby the control
decision is based on measurements of the current output error, ap-
pears more attractive. The technical literature on this subject is not
very abundant. For tracking control, the Lyapunov stability concept
appears quite useful. Wang® used it to design a guidance law for a
spacecraft docking with another spacecraft. The two docking objects
are assumed to be three-dimensional rigid bodies and to have their
own control system on board. Another assumption used in Ref. 8
is that the motion of the target decays to zero with time. Recently,
Novakovic® presented a technique using Lyapunov-like methodol-
ogy for a robot tracking control problem. In this paper, the algorithm
presented in Ref. 9 is adopted and modified for the tracking control
of flexible space robots.

In the case of flexible space structures, maneuvering motions ex-
cite vibration of the flexible members. There are two major control
schemes for flexible manipulators. The first is based on linearized
models derived from the nonlinear equations of motion of the flexi-
ble manipulator on the assumption that maneuver motions are much
larger than elastic motions. Such a perturbation approach was de-
veloped by Meirovitch and Quinn!®!! and applied by Meirovitch
and Kwak!>'* to the maneuvering and control of articulated flexi-
ble spacecraft and by Modi and Chang!* and Meirovitch and Lim'’
to the maneuvering and control of flexible robots. The second is
the adaptive control,'® which does not need dynamic models. In-
stead, an autoregressive moving average (ARMA) model of system
identification is used.

A control law for flexible manipulators based on the Lyapunov
method was proposed by Bang and Junkins.!” It represents
proportional and derivative control and includes a boundary force
as a feedback force. This control scheme is valid only for problems
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Fig.1 Flexible space robot.

in which the system approaches an equilibrium point in the
state space.

References 15 and 18 are concerned with flexible space robots of
the type considered here, but the mission is more modest in scope.
Indeed, in Ref. 15 the mission is to place a payload in a certain
position and orientation in space and in Ref. 18 the objective is to
dock with a target whose motion is known a priori.

In this paper, a control scheme permitting a flexible space robot
to track and dock with a moving target whose motion is not known
a priori is presented. For the robot maneuver, on-line feedback
tracking control is carried out by means of an algorithm based on
Lyapunov-like methodology and using on-line measurements of the
target motion. For the vibration suppression, linear quadratic regula-
tor (LQR) control in conjunction with disturbance compensation is
carried out by means of collocated sensor/actuator pairs dispersed
along the flexible arms. A modified discrete-time control scheme
is developed, and problems related to the digital implementation
of the control algorithms are discussed. The control algorithms are
demonstrated by means of a numerical example.

II. Equations of Motion

We propose to derive the equations of motion by means of
Lagrange’s equations, which requires the kinetic energy, potential
energy, and virtual work. To this end, we refer to Fig. 2, showing
the flexible space robot and the coordinate systems used. Body 0
represents the robot base, assumed to be rigid. Bodies 1 and 2 are
the robot manipulator arms attached in series to body 0, and they are
flexible. Body 3 is the end effector/payload, also assumed to be rigid.
For planar motion, the robot base is capable of two translations, x,
and yy, and one rotation, 6g; the two flexible arms are capable of
the rotations 6; and 6, and the elastic vibrations u; and u, and the
end effector is capable of the rotation 6;. Note that 8, is measured
relative to the inertial axis X; and 6; (( = 1,2, 3) are measured
relative to the base axis xo. Referring to Fig. 2, the displacement
vector Uy and velocity vector V; for a typical point in body 0 are
as follows:

Uy=R+ClRy (2a)

Vo = R+ ClayR, (2b)

X3

Body 3 I 03

Body 2 X

v % Body 1 . P 7
‘)’u -
Body 0 i
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Fig.2 Coordinate system for space robot.

Similarly, for body 1
Ui =R+ CyLy+Cl(r1 +uy) (3a)
Vi =R+ ClagLo + CTén(ry +uy) + Cligy (3b)
for body 2
Uy =R+ CILy+ CT (L +up) + C] (r, +u3) (4a)

Va =R+ CJ @oLy + C{ @1 (Ly +up) + Cli

+Cl @ (ry + wy) + Cl iy (4b)
and for body 3

Us =R+ ClLy+ CT(Ly +up) + C (L + ux) + Cirs (52)

Vs =R+ ClaoLy + CTén(Ly +uiz) + Cli,

+CTdy(Ly + up) + Clityy + C1 @13 (5b)
where
cosb; sin6; .
C; = . , i=0,1,23 6
—sinf; cosé;

are matrices of direction cosines,

- 0 -6
w; = . y
6; 0

are skew symmetric angular velocity matrices,

R=[x yl,

i=01,273 )

ri=[x 01, =[x 0" (8
are position vectors, and
u=[0 wu], u=[0 wu]" &)
are elastic displacement vectors. Moreover,
Uy = Uyly=1,, Uz = Up|xyet, (10)
The elastic displacements are discretized as follows:
ui(xi, 1) = @] (x)€; (1), i=12 an

where ®; (x;) are vectors of quasicomparison functions' and &; (r)
are vectors of generalized displacements. Regarding the robot
arms as beams in bending, the quasicomparison functions can be
chosen as a linear combination of the admissible functions

Apx Ax Y .Y
= cosh — — cos — — o}, h —— — sin —
& L L % ( ) L

k=1,2,... (12)
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which represent the eigenfunctions of a clamped-free beam for £
odd and clamped-clamped beam for &k even, where A, and o} are
nondimensional parameters.

Using Egs. (2-12), the kinetic energy of the system can be writ-
ten as

T= ZT_ Z/

body i

oiVIv,dD; = —q (13)

where ¢ = [RT 6, 6; 6, 6; &7 €517 is the configuration vector
and M is the mass matrix with entries given in Appendix A.

The potential energy for the system is due entirely to the elasticity
of the robot arms and can be written in the form

2
1
V=) st K =54"Kq (14

where

K = block-diag[0 K; K] (15a)

L
1?,~=/ EL®!(®)) dx;, i=1,2 (15b)
0

are the robot stiffness matrix and the stiffness matrices for bodies i,
respectively, where in the latter EJ; denotes bending stiffnesses.
Note that the gravitational potential is ignored here on the assump-
tion that it represents a second-order effect.

The control forces acting on the robot system include the hori-
zontal and vertical thrusts F; and F, acting at the base center, the
external torque M, acting on the base, the internal joint torques
M,, M,, and M; acting at the joints, and the distributed inter-
nal moments 7; and 7, generated by m; and m, actuators on
links 1 and 2, respectively. We define the control force vector as
F=[F, F, My M My M; 77 7]17. Then, the virtual work of
the system can be written in the form

SW = FX SJC() + Fy (Sy() + M() 89() + M1(591 - 89())

+ My (86, — 861 ~ @ (L1) 86,)
mi
+ M3 (865 — 86, — O (Ly) 66,) + ) 1 ®]T (x11) 66,
my i=1
+ ) oy (x2) 88, = 07 8¢ (16)
i=1

where Q is a generalized force vector defined as
0 =GF amn

The entries of the matrix G are given in Appendix A.
Lagrange’s equations for the system can be expressed in the sym-

bolic vector form
d /oT T 3V
il el I T 18
dt(f)i]) 8q+ aq e 18

Inserting Eqgs. (13), (14), and (16) into Eq. (18), we obtain the system
equations in the matrix form

M@g+Cq.99+Kg=0 (19)

The entries of the matrix C are also given in Appendix A.
Equation (19) represents the equation governing the motion of
the flexible space robot. It is used for computer simulation of the
dynamic system. For the purpose of control design, Eq. (19) is con-
veniently separated into two sets of equations, rigid-body motion
equations and elastic vibration equations. To this end, we write
q=1[q] ¢q71" andQ = [Q@] QT1", whereg, = [xo Qo 6o 61 6, 651"
is a rigid-body displacement vector, g, = [§1T §Z]T is an elastic
displacement vector, and @, and Q, are corresponding generalized

force vectors. Then Eq. (19) can be written in the partitioned ma-
trix form

M,y M,, qr ¢, G qr
Mt M|l | T c.lla
0 0 qr Qr
[ «)l]-[2]
o xlla]T |0 o0

After some algebraic manipulations, and ignoring higher order terms
in the elastic displacements, Eq. (20) can be separated into

M. (q)q, +C-4r,§4:)9, +d.(9.9.9) = O, 2D
and

Me(qr)qe + Ce(qr‘ qr)qe + Ke(qrv qr, Qr)qe +dr(qrv qra qr) = Qe
(22)

where M, is the rigid-body part of the mass matrix M,, and C, is the
rigid-body part of C,,. Moreover, M, = M,,, C, = C,,, K, consists
of the stiffness matrix K and the part due to elasticity in the matrices
M,, and C,,, andd, and d, are disturbance vectors. The entries of the
various matrices are given in Appendix B. The term d, in Eq. (21)
is a linear combination of g,, 4., and g, with the matrices M,,, C,.,
Kj,, and K¢ depending on ¢, ¢, and ¢,, as shown in Eq. (B3) of
Appendix B. It can be regarded as a disturbance due to the flexibility
of the robot arms. The term d, in Eq. (22) is a function of ¢,, ¢,,
and ¢,. It can be regarded as a disturbance due to the rigid-body
maneuvering of the robot. Equations (21) and (22) are coupled. The
coupling between rigid-body motions and flexible vibration is pro-
vided in Eq. (22) by the persistent disturbance d, from the rigid-body
motion, which causes the elastic motion ¢,, 4., and g,. In turn, the
elastic motion disturbs the rigid-body motion through d, in Eq. (21).
Equation (21) is used for the design of the maneuver control for
tracking a moving target and Eq. (22) is used for design of control for
vibration suppression.

III. Tracking Control Algorithm Using
Lyapunov-like Methodology

In this section, the general idea of Lyapunov-like methodology
for tracking control developed for rigid robots” is introduced.
The dynamic equation of a rigid robot is given by

M@q+Cleg.94=20 (23)

and the kinematic relation between the robot configuration vector g
and robot output vectory, is given by

Ye =F(g) (24)
so that
ye=J@)q (25a)
Je=T@i+ 4.4 (25b)
where J(g) = [df/0dq] is the Jacobian matrix.

Because tracking is carried out by the end effector, the track-
ing problem consists of driving the error e = y, — y, and its time
derivative e to zero. To this end, a Lyapunov function is defined by

V=12 (262)
where
2=+ fe) (26b)

in which g is a positive scalar. If the control is designed in such a
way that

V = —UV (273)

(/o)
o

(27b)
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Fig.3 Bursting phenomenon.

where ¢ is an arbitrarily small positive scalar and Vj is the initial
value of V, it is guaranteed that the function V remains in the ¢
neighborhood of zero for £ > t,, no matter how the target motion
changes. This ensures that the error e and its derivative ¢ are also
very close to zero.

We consider the nonlinear control law

Q=M@u, +Cq.99 (28)

where u, is chosen in the form®

u, = [(h1 + h2)/Alw (292)

T Jw if ZiJw =8
= = 29b
A {3 if TIw<$ @90

periods and the length of the “good performance” periods are both
unpredictable. This phenomenon is similar to the so-called bursting,
which appears frequently in discrete-time adaptive systems and has
been reported for almost a decade.?’ Due to the complexity of our
space robot, it is difficult to identify clearly the source of the bursting
phenomenon. However, because the phenomenon is not reported in
Ref. 9, in which a nonredundant robot is simulated in discrete time,
we can conjecture that in the case at hand, the phenomenon is related
to robot redundancy. It is important to keep the control force from
bursting. Otherwise the possibility exists that the control cannot be
realized. To this end, a modified version of the above algorithm
is presented, which also takes into account the flexibility of the
robot arms.

IV. Modified Tracking Control Algorithm
for Flexible Space Robots

To apply Lyapunov-like methodology to flexible space robots,
we first extend the kinematical relation given by Eq. (26) to flexible
space robots as follows:

X, = xog— Losinfy + Ly cos B + Lycos
+ L3 €08 63 — uyp sinf; — uy3 sinb,
Yo = yo+ Locos 8y + Ly siné; + L, sind, + L3sinfs a3n
+ uy, cos 0 + U3 cos b
6, =06,
For kinematical analysis, we define g = [g7 ¢71”, where g, was
defined earlier and g, = [#12 u2]”. The Jacobian matrix J, ob-

tained by differentiating Eq. (31) with respect to g, has the form
J =1[J, J,], where

0 —L() CcOos 9() —Ll sin 91 — Uy COS 01 —L;_ sin 92 — U3 COS 97_ ‘—L3 sin 93

1
Jo=|0 1 —Lysiné,
00 0 0

in which § is a small positive scalar, w is an arbitrarily chosen vector,
and

hy =2" G, — Jq+ Bé) (30a)
hy =0507T2=0V (30b)

It can be shown that the control algorithm described above yields
the desired result, i.e., Eqgs. (27a) and (27b).

The control algorithm possesses the following advantages:

1) The control decision is made using on-line information of the
current robot state (g, ) and target state (e, ¢, and y,). The feedback
control can automatically counteract adverse disturbances in space
and achieve the final docking in an accurate and smooth way.

2) The on-line calculation is relatively simple, as it involves nei-
ther inverse kinematics nor matrix inversions.

3) Stability is always guaranteed by Lyapunov stability theorem,
as can be seen from Egs. (27), no matter how the target motion
changes.

However, after applying the above algorithm directly to our space
robot system and simulating the system in both continuous time
and discrete time, the results from a discrete-time system exhibited
some undesirable phenomenon, although the performance of the
continuous system was good. As shown in Fig. 3, in which the solid
line denotes continuous-time results and the dashed line denotes
discrete-time results, the control force in discrete time exhibits pe-
riods of oscillatory behavior. Further numerical simulations show
that the magnitude of the control force during chattering is bounded,
although very large, and its mean value is close to the results of the
corresponding continuous-time system. Moreover, the occurrence
of the oscillating period is random, and the length of the oscillating

L, cos8 — Uiz sin 01

L2 Cos 92 — Ugsz sin 92 L3 Cos 93 (3221)
0 1
—sinf; —sind,
J, = cos 6, cos 6, (32b)
0 0

Hence, we can write the relations

ye=Jgq (33a)
jo=JTg+7T§ (33b)

The dynamical equation for the rigid-body motion of the space
robot is given by Eq. (21). We first define a nonlinear control law
for Q, as follows:

Qr =M, (qr)ur + Cr (qrv qr)Qr (34)
Substituting Eq. (34) into Eq. (21), we obtain
G, =u, — M 'd, (35)

To prevent the bursting phenomenon, we propose decoupled
Lyapunov functions

V, = %z?, 1=1,2,3 (36&)

zi = ¢ + Be;, i=1,2,3 (36b)

Taking the derivative of Eq. (36a) and using Egs. (33) and (35),
we obtain
Vi = zih; — Zi([Jrur]i -

[7M'd.]). i=1,2,3 (37)

i
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where [-]; denotes the ith element of a vector and 4; are the compo-
nents of the vector

b=, — Jg+ Bé — L. 38)

Because M, is a positive definite matrix, M, ! is bounded, and we
note that J, is also bounded. Moreover, from Eq. (B3) in Appendix
B, we see that d, is a linear combination of ¢., ¢., and §,. We
then assume that d, is bounded in accordance with our ultimate
goal of vibration suppression. Hence, we can assume that the term
[J.M'd,]; is bounded and satisfies the relation

[/Md,], <8, i=1,23 39)
From Eq. (39), we have
u[ M), < 1218, i=123 “40)

If we can determine a vector u, that satisfies the conditions

)i = zihi + 30z} + 1218, i=123 @1

then
Vi = —loizl + 7 [ M7, — |l < —jeiz] =

i i -V,

i=1,2,3 (42)

According to the Lyapunov stability theorem, Eq. (41) is the

sufficient condition for our tracking problem. We further simplify
Eq. (41) by assuming z; # 0, so that

[Jrur]i = hi + %aizi + Sgn(zi)aiv i = 1, 2! 3 (43)

or

[Ju)i =5, i=1,2,3 44)

with
si = i — [Tl + Bé — [uiili + Loz +sgn(@)d  (45)
Equation (44) can be expressed in the matrix form
Jou, =s (46)

where s = [s1 52 5317 and J, is a 3 x 6 matrix. The solution of
Eq. (46) does not yield a unique u,. This agrees with Eq. (29) in the
original control scheme in which w is an arbitrarily chosen vector.
Here we can simply prescribe the redundant degrees of freedom and
then solve Eq. (46) accordingly.

As a simple example, we constrain three components of u,
by taking

Uy == Upg = Ups = 0 47

for the entire tracking period and use Eq. (46) to solve for the other
three components of #, on-line, with the result

) = 51 + L3 sin Gsu,s, Uy = 53 — L3 cos B3u,6,

Ureg = 53 (48)

The above algorithm for u,, together with Eq. (34), represents the
maneuver control for a flexible space robot tracking a moving target
whose motion is not known a priori. The control algorithm requires
that the following conditions be satisfied:

1) The output error vector e and its time derivative é can be
measured on-line.

2) The target output acceleration J, can be measured or estimated
on-line.

3) The robot rigid-body displacement vector ¢, and its time
derivative ¢, can be measured on-line.

4) The elastic tip displacement vector g, and its time derivatives
g, and g, can be measured on-line.

5) The elastic vibration of the robot arms should be controlled so
that a reasonable value for the upper bound §; can be set.

In addition to the advantages of the original algorithm mentioned
in Sec. III, the modified control algorithm presented here provides
two extensions from the original one.” The first extension is that the
flexible effect of the robot arms is incorporated into the control algo-
rithm. It is reflected in the kinematic relations expressed by Egs. (31)
and in the term sgn(z;)3; in Eq. (45), which is associated with the
vibration disturbance vector d, in Eq. (21). The second extension
consists of the use of decoupled Lyapunov functions [Egs. (36)]
to eliminate the bursting phenomenon (Sec. III) when the control
algorithm is implemented in discrete time.

V. Vibration Control

Because of coupling between the rigid-body motions and the
elastic vibration, the performance of the tracking control depends on
how well the vibration suppression is carried out. Without vibration
control, the tracking cannot be truly realized for a flexible space
robot. Our objective is to drive the elastic motion state g,, g, close
to zero during the tracking and docking operation. We recall that
the motion of the elastic vibration of the space robot is described
by Eq. (22), which represents a linear time-varying system with a
persistent disturbance term d, due to the rigid-body motions.

We propose to control the vibration in discrete time. To this end,
we separate the generalized control force @, into

Qe (k) = Qer (k) + Qee (k) 49)

The discrete-time control algorithm for disturbance compensation
is expressed by

Q.. (k) = d, (g, k), 4 (k), §- (k) (50)
If the disturbance is canceled perfectly, Eq. (24) becomes
Me(qr)qe + Ce(qry qr)Qe + Ke(qrv qr’ ér)qe = Qee (51)
Letting x(k) = [g.(k)T ¢.(k)T]" be the state vector and u(k) =
Q.. (k) the control vector, the discrete-time state space counterpart
of Eq. (51) can be written as

x(k+ 1) = Atk)x(k) + Bkyuk) (52)

where the coefficient matrices are given by

Alk) = & (53a)
Blk) = ("7 — NATkT)BUT) (53b)
in which
AQ) = ! 54
O=1_ymk, —mc, (54)
0
B(t) = e (54b)

The performance index for the discrete-time LQR is given by?!

N
J =3 Y ®O®E® T WRu®] (55

=0
yielding the control law
uk) = —[R+ BOR K B®I B MK ®AKxK)  (56)
where K (k) satisfies the discrete-time algebraic Riccati equation
Ky = AT®IK k) — K& B®IR + BT (0K (k) B)1™!
x BT (K (01AK) + 0 (57)

Direct application of the discrete-time control algorithm described
by Egs. (50) and (56) to our problem causes severe instability. The
reason is that the discrete-time control force @,, in Eq. (50) is not
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able to cancel the continuous disturbance term 4, in Eq. (22) per-
fectly. Hence, the LQR control design based on Eq. (51), in which
the disturbance is absent, is no longer appropriate. The error accu-
mulates with time and it finally results in instability. To resolve this
problem, a modified vibration control algorithm is proposed in the
next section.

V1. Modified Discrete-Time Vibration
Control Algorithm

An examination of the disturbance term d, in Eq. (B14) of Ap-
pendix B, i.e., an examination of

d, = MLg, + Corg; (58)

reveals that g, in the first term is the major cause of the system
instability. Usually ¢, (k) is not available and g, (k — 1) is used as an
estimate of g, (k). Stable performance of the system can be achieved
only if ¢, (k) can be measured or estimated perfectly. Even a very
small error in §, appeating in Eq. (58) can result in failure of the
LQR design. To avoid use of g, in Eq. (58), we replace g, by u,, so
that the disturbance compensation scheme becomes

Qer (k) = dr (qr (k), qr (k), u, (k))
= M, (g, (k))u, (k) + Cer (g, (k), g, (k))g, (k) (59
where u, (k) is calculated by the tracking control algorithm given by

Eq. (46). We then substitute Egs. (58), (59), and (35) into Eq. (22)
and obtain the system equation as follows:

Me(qr)ée + Ce(qrv Qr)qe + Ke(qr’ qr, Qr)qe - M;I;Mr_lde = Qee
(60)

As shown in Appendix B, d, can be expressed as
d. = Mg + Crege + (K + KE)g. (61)

where K, and K¢ are given by Egs. (B6) and (B8), respectively.
Substituting Eq. (61) into Eq. (60), we obtain the modified linear
time-varying system

M:(Qr)qe + C:(qr’ q:)q. + K:(qrv qr,Gr-)qe = Q.. (62)

where, comparing Eqgs. (56) and (67), we observe that matrices M,
C?, and K represent modified coefficient matrices given by

M:=M,— MMM, (632)
C:=C,~M.M'C, (63b)
K:=K.— MM (K +K¢) (63c)

Based on Egs. (62) and (63), we can follow the same procedure as
in Sec. V and obtain the control law for Q... The simulation results
using the modified control scheme showed stable performance. Fur-
ther numerical simulations showed that, even in the case of a system
with only the mass matrix M, modified, i.e., a system described by

M:(Qr)qe + Ce(qrv qr)qe + Ke(qry iln Qr)Qe = Qee (64)

the LQR control law is still able to produce good system perfor-
mance. This is because the first term on the right side of Eq. (61)
is dominant, so that using C, and K, instead of C} and K7, re-
spectively, is equivalent to dropping the second and third terms in
Eq. (61), which does not affect the system performance very much.
Note that the control gains are time varying, so that they must be
updated repeatedly.

VII. Numerical Example

‘We assume that the parameters for the flexible space robot shown
in Fig. 1 have the values

mg = 40.0 kg, my =m, = 10.0 kg, m3 = 2.0kg
Ly=25m, Ly =L, =10.0m, L;=20m
S, =8,=0, I, = 83.333 kg m® (65)

I, =333.333kg m?, ElL,=EL = 10" kg m?

The target motion is not known a priori and must be measured
on-line. However, for simulation purposes, we choose an example
target trajectory as follows:

T
x;(t) = 10.0sin (T(St)

37
)= —1t
6,(¢) 20

The initial conditions of the space robot are given by

¥,(t) = 10.0 + 10.0sin (%t>

r€[0,5.0s] (66)

g,(0) =[0.0 —15.0 0.0 0.57 0.47757 0.257]"

q.(0) =0 (67)
q.(0) =[0.01--.0.01]7, §.(0)=0
The parameters of the control synthesis design are
B =20.0, €=1073, t,=25s, 8 =20

i=1,2,3 (68)

We designate the three redundant degrees of freedom in %, as u,3,
U4, and u,s. They are defined for two different cases as follows:
Case 1:

Uy = Upy = tys = 0, 0<r<5s (69)
Case 2:
0, t<0
4 AGy/ 12, 0<t<ts]2
s = o/ ) =t/ (70a)
—4A0()/tf, tf/2<tstf
0, t>tf
0, t<0
4 A8, /¢, 0<t<ts)2
. , =t/ (70b)
-—4A01/l‘f, lf/2<t5[f
0, l>ff
[ 0, t<0
4 A0, /12, 0<t<ts)2
us = | A0 , =t/ (70¢)
—4A02/ff, tf/2<t§tf
O, t>tf

where t; = 4.0 s, Ay = m/6 rad, A6, = 7 /4 rad, and AG, =
—m/6 rad.

For a rigid space robot, Eqgs. (69) and (70) represent constraints
on the acceleration of the robot configuration. In case 1, the mission
amounts to keeping the base attitude 6, and the two joint angles 6,
and 6, constant while tracking a moving target. In case 2, the mis-
sion implies bang-bang maneuvers involving a base attitude change
of A6, and arms angle changes of A8, and A#, while tracking a
moving target.

The constraints cannot be realized perfectly for a flexible space
robot due to disturbance-causing vibration. However, the perfor-
mance can be improved by vibration control. Because the major
objective here is to track the moving target, we use the constraint
equations (69) and (70) to eliminate the robot redundancy.
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Fig.4 Time-lapse picture of robot configuration.

Note that to prevent chattering in simulations sgn(z) in Eq. (45)
was replaced by

lz| > €

sat(z) = (@)

sgn(z) for
z for Z<E€E

where ¢ is a small positive number.
For vibration control, the LQR design parameters are chosen as

R = diag[lnxn Inxn]
Q - dlag[20 X 104In><n 1041n><n 2.0 x 1041"><" 1041")("] (72)

The elastic displacement for each of the two arms was modeled by
means of five quasicomparison functions.'”

The elastic deformations are controlled by means of five col-
located actuatot/sensor pairs, so that m; = 5 and xi; = (J/5)L;
(i=1,2,j=1,2,...,5). The control forces generated by these

01r 1
02F 1
03k | J

04l

e(3) (rad.)

05k: |

0.6 _

1 (s)

&(3) (rad./s)

1(s)

Fig. 5 Time history of orientation error and orientation error rate:
case 2.

g

0 1 2 3 4 5
t(s)
Fig. 6 Time history of tip elastic displacement of first flexible body.

actuators are transformed into generalized control forces by
means of Eq. (17), with the matrix G being given by
Egs. (A7) and (A8). Of course, the sensor measurements u; (x;;, ¢)
(G=1,2, j=1,2,...,5) are related to the generalized elastic dis-
placement vectors &;(¢t) (i = 1, 2) through Eq. (11).

The system performance under the tracking and docking maneu-
ver is simulated over 5 s. To this end, the tracking control algorithm
presented in Sec. IV and the vibration control algorithm presented
in Sec. VI are used. The simulation is performed in discrete time
with a sampling period T = 0.001 s.

Figures 4a and 4b show time-lapse pictures of the robot config-
uration for cases 1 and 2, respectively. For case 2, time histories
of the orientation tracking error e(3) and its time derivative é(3)
are shown in Fig. 5, the time history of the tip elastic displace-
ment of the first flexible link is shown in Fig. 6, and time histo-
ries of the control force F, and torques M, and M; for the rigid-
body maneuver are displayed in Figs. 7a~7c¢. Time histories of the
control torque 7,(3) acting on the second flexible body for distur-
bance rejection and LQR control are shown in Figs. 8 and 9, respec-
tively. The results are very satisfactory, with control achieved in less
than 1 s.
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Fig.7a Time history of control force for translation of base in x direc-
tion.
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Fig. 7b Time history of control torque for rotation of base.
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Fig. 7c 'Time history of control torque for rotation of body 3.
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Fig.8 Time history of control torque acting on body 2 for disturbance
rejection.
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Fig. 9 Time history of LQR control torque acting on body 2.

VIII. Summary and Conclusions

This paper is concerned with the control of a flexible space
robot executing a docking maneuver with a target whose motion
is not known a priori. The control is based on on-line measure-
ments of the target motion. The dynamical equations of the space
robot are first derived by means of Lagrange’s equations and then
separated into two coupled sets of equations suitable for rigid-
body maneuvers and vibration suppression. Controls for the rigid-
body maneuver and vibration suppression are developed and im-
plemented in discrete time. Problems arising from digital imple-
mentation of the control algorithms are discussed. Then, modi-
fications of the control algorithms so as to prevent the problems
are made.

The control scheme presented can be applied to two-dimensional
as well as three-dimensional problems. Furthermore, it has the flex-
ibility of solving different problems by defining appropriate output
vectors other than the end-effector output vector. For example, if
the mission involves tracking and docking with an orbiting target
while its base attitude is to be kept constant, we can define the out-
put vectorasy, = [x, y. 6. 6]7 and the target output vector as
y: =[x, ¥ 6 0]7, and then the proposed tracking control algo-
rithm can be used to drive the error vectore =y, —y, and its time
derivative e to zero.

A numerical example is used to demonstrate the control scheme.
The simulation results have shown very good system performance
in both the tracking maneuver and the vibration suppression.

Appendix A: Matrices in Equations of Motion

The mass matrix M appearing in Eq. (14), as well as in Eq. (21),
is defined as

— T —
m, mig
T T
my, My
Y T T
M, my; msg
T T T
m mi, +b
47 48 1
M= r r (A1)
ms; +b, msg
T
Mg, Mgy
T
myy, ..., Mg myy Mg
Lmlx, ceo, Mg mig mgg
with
- m 0 — S a, ap —S383 7
0 n, —S,y asy  ay S3C3
_ —Six =Sy Ly as as S3Lopsy
M, = = (A2)
a as as I a ag
ay a, ag ar 12 agy
L —S353  Szcs  Silgsag ag  ae Iy
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in which

=T =T
a; = —=Sy51 — ®,,€c1, ay = —Sps — P,,600

=T =T
az = Spcy — €,,§51, ay = Spcy — @,,6,,

=T =T
as = S;1 Losio + ®,,€1 Locio, ag = SpLosy + ®,,6§,Locy

ar = SpLica + S® € 50

=T =T
—®,6, L1521 + 8,,6,90,¢,00 (A3)

ag = SsLicsi + S P, 531, ag = S3Lyc3 + S3B5,€,53,

- -7
by = 2,PE 50, by = —21,%8,,€,5m

I = I+ & mp&,, L= Iy + & mgsé,
and
msy; —= ‘i’nLoslo

my; = — @51, my = &,

my; = P+ (my +m3)L Py, ms; = S P10y
mg; = S3Piacs
mys = Ppycy

myg = —P s, myy = P50,

me; = S3P1ac3 (A4)

my = ®Licyy, msg = &, +m3 L, B

mey = S3Pascs
my = Ay + (ma +m3) P @7, mqy = le‘i’,Tzczl
meg = Ag +my®y Bl

and we note that s; = sin6;, ¢; = cos§;, s;; = sin(6; — 0;), and
¢;j = cos(#;—6;). Moreover, we have used the following definitions:

m; =mgy+m;+my+my

Stx = Sox $in 6By + Spy cos Gy + (my + my + m3)Ly cos Gy
Sy = ~Sox €05 O + Soy sin Gy + (m1 + mz + m3)Losin Gy

S = 81 + (ma +m3)Ly, Sp =8 +m3Lly (AS)

Lo = Iox + Ipy + (my + my + m3) L

Iy =T + (my+ my)L3, Iy = I +msL}
D, = D1 + (M2 + m3) Py, O =0y + my®y
in which

mi=f 0i dD;, i=0,1273
body i

S = f pix; dD;, I, = / pix?dD;, i=12,3
body i body i
Sox = / pox dDy, Soy = / poy dDgy
body 0 body 0

Iy, = / ,00)62 dDy, Iy, = f PO)’2 dDy  (A6)
body 0 body 0

P, =f p;®; dD;, b, =/ pix;®; dD;
bodyi body i

A,' Z/ p,@,@f dD,‘, i= 1,2
body i

@1 =P xy=14» Doy = Pa(x2)xy=1,

The matrix G in Eq. (19) is defined as

G =

1 0 0 O 0 0 07 077
010 0 0 0o o' oF
001 -1 0 0o 0" oF
000 1 -1 0 o oF A7)
000 O 1 -1 0o o7
000 O 0 1 of o
000 0 —@ (L 0 G, 0

L0 0 0 0 0 —d,(Ly) 0 G,

where primes denote spatial derivatives and

Gi = [®](xn) - B (xim)], i=12 (A8)
in which m is the number of actuators on each link. Here m is equal
to the number of modes and G; are square matrices.

The coefficient matrix C in Eq. (21) is defined as

Cs Cuy Cis Cis Cpp Cyg

(A9)

S o O O o o oo
S OO O O o oo

S

v}

9

7

<

Y

=N

Y

Q9

£

Cyz Co Cgs Gy Cyp 0|
where

. - T .
Ci3 = S0, Cy = (_Stlcl + ‘I’,1§151)91

- T - A
Cis = (——S,2cz + <I>,2.£2sz), ) Cis = —S83¢365
=T . =7 :
C17 = -—2{)“6‘191, CIS = _2q>;20202
. -7 :
C23 = _Stxe() C24 = (_‘Stlsl - @,151(31)91
- T . A
Cos = (—Sns: — 8,6,0:)6,, Cos = — 535365
=T . =T ;
Cy = —28,,5:6,, Cyy = =2 ,,5:0,
— T .
Cyy = (SnLoCm - 'I’,1§1L0510)91,
- T .
Cy5 = (S,zL()Cz() - ‘I’rzﬁzL()Szo)ez
. - T -
Css = S3Lyc306s, C37 = 2@, Lyciy0;
- T .
C38 = Z.OQ’ZL()CZ()QZ

Ci = (—SuLoCm + ‘i’,TlﬁlLoslo)éo
Cs4s = (—'StleSzl - i),Tzﬁlecm + Sp®),€ 001
- §;£2¢{2£1521)é2
Cis = (—S3L1531 + 534’{251031)93
Cir =267 (Ay + (m2 + m3) @ @) 6,
Cus = 2(~Lisu @), + @,6,c8,,) 6 (A10)

=T .
Cs3 = (—SIZL()Czo + ‘I’,ZEZL()Szo)Qo



CHEN AND MEIROVITCH

Css = (S;2L1521 + <i>,T2§2L1021 L A
+ ‘i’fT2€2<I’1TzE1S21)91
Csg = (—53L2S32 + 53‘1’5352%2)93,
Cs7 = 2(Si2521 8%, + 6,01 B],)61
Csy = 2] (Az + m3'1>23<1>§3)91, Ces = —S3Locsobo
Ces = (53L1S31 - 53@{251031)9'1

Cos = (S3Lasna — S38T€sc32) 6, Cs1 = 2853538336,
Cez = 2835,87,0,, Cr3 = —®,1Loc1obp

Cra = —[A1 + (my + my) @@, 16,6,

Crs = (—Sasu®i — ‘i’,Tzﬁzczl‘I’lz)éz
Cr = —S355,P 1265, Cyps = —24’12&’232192
Cs3 = —®,, Locaob, Cyy = (L1s21<i’,2 - ‘I’1T2€1021(i)t2)él
Cys = —(Az + m3§>23§>2T3)£292, Css = —S35282365

Cs1 =28, ®],5216,

Appendix B: Matrices in Partitioned
Equations of Motion
The mass matrix M, and the coefficient matrix C, in Eq. (23) are
defined as

M, =
- m, 0 —Six =881 —Sns =857
0 m; _Sty Si1c1 Sner S3¢3
=S =Sy Lo SiiLosio SplLos  S3Losy
=851 Sucr SuLosyo I SpLica  S3Lics
—8pss Spca SnLosw  SpLica I S3Lyc3
| —S3s3  S3c3 SaLossp  SsLicar  Silacs; Lo
(B1)
C, =
(00 Siybo =Suc1by —Spcaby —S3c36; ]
00 —Sixbo —S815101 —8128520; — 835363
00 0 SiaLociobr  SLocfy  SsLocsobs
0 0 —S;1Lociobh 0 —SioL150162 —S83L153163
0 0 —SpLocabo Si2Ly(s216 0 —83L753,65
| 00 —S3Locsofo S3Lissifr  S3Lasnbs 0 h
(B2)
The disturbance vector d, in Eq. (23) is defined as
d, = M. + Crege + (Kyy + K¢)qe (B3)
where
my; mpg
my; My
M, = (B4)
Mgy Mgy

Moreover,

in which

B —Zi)tTlClé]
—Zq_’tTlSlé]

0
2‘}{2 S,zSzlél

L 2@{2 S3S31é1

—-&) 016
_&7 6
‘i’le Loc106:
ky
q>1TZSt2821§1
L ®7,835316,

=T oo
2@” L()Cmal

765
——2&’20292
28" 5,6,
28] Locybs

—28] Lisn6,

0
281, 83530, |

(B5)

=T .
—§12C292
=T .
*@,2.9292
=T .
D, Locyb,
i .
~®,L 5,6,

ko
‘I’; 53532é2 ._

(B6)

- ) . . .
kyy = —®,, (c1%o + 5150 — Lociobo) + ®1,(Si25216; + S353163)

N . . =T .. .
kyy = —®,,(co¥%o + 5250 — Locaobo) — P, L152161 + $235353,03

and

in which

..T .
2
<I>,1s191
- T -
——11>11c16,2
- T .2
——'I>,1Losm€1

kCl

T 32
—<I>12S,2(:2191

T A2
| ~¢12S3C3191

- T - . .
kCl = QHL()S“)G(% + @fzSﬂchGzz + @{283(,‘31932

B7
i’,TZ.S‘zézz
=T
—§’2C2922
- T .
—Qﬂ L()Sz()922 (B 8)
- T .
—¢;2L1621922
kc2
—®7, S3¢3,62
(B9)

=T . =T . .
kc2 = <I>,2L0s20002 + q)tZLICZIGIZ + ¢§3S3C32932

The mass matrix M, and the coefficient matrix C, are defined as

M, = l:Al + (my + m3) @1, B,

.

and the coefficient matrix K, is defined as

where

Ky

and
Kc =

[_(Al + (my + m3)®, B, )67

T T
q)tzq>12C21

0
z‘i’n@{zszlél

K.=K+Ku+Kc¢

{ 0
‘i’:z‘I’szSzlél

T T 12
—<I>,241>1202101

=T
D,P, 00

] (B10)
As + my®ydL,

- T .
—2%,9,,516;

} (B11)
0

B12)
0 B13)
K,
—P <f’Ts 6
12 ,2212:| ®B14)
0

=T .
—¢12@12C21022
——(Az -+ m3<I>23<I>;3)922

(B15)
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The disturbance vector d, is defined as
dr = M};qr + Cerqr (B16)

where M,, is given by Eq. (B4) and

C,, =
0 0 —®, Lociobo 0 —® 12808210, —P125353165
00 —®,Locobdy ®i2L1s26; 0 — P23 535303
(B17)
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