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Control of a Flexible Space Robot Executing a
Docking Maneuver

Y. Chen* and L. Meirovitch1"
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

This paper is concerned with a flexible space robot executing a docking maneuver with a target whose motion
is not known a priori. The dynamical equations of the space robot are first derived by means of Lagrange's
equations and then separated into two sets of equations suitable for rigid-body maneuver and vibration suppression
control. For the rigid-body maneuver, on-line feedback tracking control is carried out by means of an algorithm
based on Lyapunov-like methodology and using on-line measurements of the target motion. For the vibration
suppression, LQR feedback control in conjunction with disturbance compensation is carried out by means of
collocated sensor/actuator pairs dispersed along the flexible arms. Problems related to the digital implementation
of the control algorithms, such as the bursting phenomenon and system instability, are discussed and a modified
discrete-time control scheme is developed. A numerical example demonstrates the control algorithms.

I. Introduction

SOME of the functions of a space robot are to deploy or retrieve
free-flying payloads and to service orbiting spacecraft. Under

consideration is a robot with long flexible arms, such as in the case
of the remote manipulator in the Space Shuttle. An example of
such a space robot is shown in Fig. 1. The robot consists of a rigid
base, two flexible arms attached to the base in series, and an end
effector/pay load. To carry out the mission described, the space robot
must have its own control system enabling the platform to translate
and rotate and its arms to rotate. In this paper, the target motion
is assumed not to be known a priori, so that the control permitting
the space robot to execute the docking maneuver must be based on
on-line measurements.

The equations governing the behavior of space robots are non-
linear and can be expressed in the general form of the state and
output equations

x =f(x, u) (la)

y=g(x) (ib)
respectively, where x is the state vector, u is the control force vec-
tor, and y is the output vector, usually defined as the position and
orientation variables of the end effector. The target output vector
yt is defined as the position and orientation variables of the target.
We can then define the error vector as e = yt — y. The problem
reduces to that of designing a control law u(t) so that e and its time
derivative e are driven to zero.

There are two significant differences between industrial robots in
current use and space robots considered here. In the first place, in-
dustrial robots are mounted on a fixed base, whereas space robots are
mounted on space platforms capable of translations and rotations.
The second significant difference is that space robots must be very
light, and hence very flexible, unlike industrial robots characterized
by very bulky and stiff arms. The flexibility of the robot arms causes
elastic vibration, which tends to affect adversely the performance
of the end effector. Both a floating platform and flexibility are being
considered in this paper.

In the case of space-based robots, research has been carried out on
the assumption that the platform floats freely,1"6 i.e., that there are
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no external forces and torques acting on the system, which implies
that the system linear and angular momenta are conserved. Whereas
these assumptions can be justified for a free-flying robot, they are
unrealistic in the case of a space robot attempting to intercept and
dock with a moving target.

The most commonly used approach to robotics can be described as
follows: First, inverse kinematics is performed to obtain the desired
robot configuration trajectory qd(t) from the desired end-effector
trajectory j</(f). Then, using the system equations of motion, in-
verse dynamics is performed to obtain the control force realizing
qd(t). If the target motion is known a priori, the end effector's tra-
jectory, as well as the robot trajectory, can be determined by an off-
line planning algorithm. For a kinematically redundant robot, such
as the one considered here, the robot redundancy can be used to
achieve optimality.7

If the target motion is not known a priori, planning is impossi-
ble. Even when the target motion is known, it is very likely that
some unexpected disturbance can cause errors. In view of this, on-
line feedback control for the tracking problem, whereby the control
decision is based on measurements of the current output error, ap-
pears more attractive. The technical literature on this subject is not
very abundant. For tracking control, the Lyapunov stability concept
appears quite useful. Wang8 used it to design a guidance law for a
spacecraft docking with another spacecraft. The two docking objects
are assumed to be three-dimensional rigid bodies and to have their
own control system on board. Another assumption used in Ref. 8
is that the motion of the target decays to zero with time. Recently,
Novakovic9 presented a technique using Lyapunov-like methodol-
ogy for a robot tracking control problem. In this paper, the algorithm
presented in Ref. 9 is adopted and modified for the tracking control
of flexible space robots.

In the case of flexible space structures, maneuvering motions ex-
cite vibration of the flexible members. There are two major control
schemes for flexible manipulators. The first is based on linearized
models derived from the nonlinear equations of motion of the flexi-
ble manipulator on the assumption that maneuver motions are much
larger than elastic motions. Such a perturbation approach was de-
veloped by Meirovitch and Quinn10-11 and applied by Meirovitch
and Kwak12'13 to the maneuvering and control of articulated flexi-
ble spacecraft and by Modi and Chang14 and Meirovitch and Lim15

to the maneuvering and control of flexible robots. The second is
the adaptive control,16 which does not need dynamic models. In-
stead, an autoregressive moving average (ARMA) model of system
identification is used.

A control law for flexible manipulators based on the Lyapunov
method was proposed by Bang and Junkins.17 It represents
proportional and derivative control and includes a boundary force
as a feedback force. This control scheme is valid only for problems
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Fig. 1 Flexible space robot.

in which the system approaches an equilibrium point in the
state space.

References 15 and 18 are concerned with flexible space robots of
the type considered here, but the mission is more modest in scope.
Indeed, in Ref. 15 the mission is to place a payload in a certain
position and orientation in space and in Ref. 18 the objective is to
dock with a target whose motion is known a priori.

In this paper, a control scheme permitting a flexible space robot
to track and dock with a moving target whose motion is not known
a priori is presented. For the robot maneuver, on-line feedback
tracking control is carried out by means of an algorithm based on
Lyapunov-like methodology and using on-line measurements of the
target motion. For the vibration suppression, linear quadratic regula-
tor (LQR) control in conjunction with disturbance compensation is
carried out by means of collocated sensor/actuator pairs dispersed
along the flexible arms. A modified discrete-time control scheme
is developed, and problems related to the digital implementation
of the control algorithms are discussed. The control algorithms are
demonstrated by means of a numerical example.

II. Equations of Motion
We propose to derive the equations of motion by means of

Lagrange's equations, which requires the kinetic energy, potential
energy, and virtual work. To this end, we refer to Fig. 2, showing
the flexible space robot and the coordinate systems used. Body 0
represents the robot base, assumed to be rigid. Bodies 1 and 2 are
the robot manipulator arms attached in series to body 0, and they are
flexible. Body 3 is the end effector/payload, also assumed to be rigid.
For planar motion, the robot base is capable of two translations, ;c0
and jo, and one rotation, 00; the two flexible arms are capable of
the rotations 9\ and 02 and the elastic vibrations u\ and u2 and the
end effector is capable of the rotation 03. Note that 00 is measured
relative to the inertial axis X\ and #/ (/ = 1, 2, 3) are measured
relative to the base axis *0. Referring to Fig. 2, the displacement
vector t/o and velocity vector V0 for a typical point in body 0 are
as follows:

U0=R

V()=R +

(2a)

(2b)

Fig. 2 Coordinate system for space robot.

Similarly, for body 1

V! = R + C0
r£0Lo + Cjf&iCri + MI) +

for body 2

. = R + CjLo + Cf(Li + un) + C|>2

~~ ~*T ~ (j i .. \ i f~*T •..x 1 &>1 ^jL/i ~r Mi2J ~r C j Mi2

(3a)

(3b)

(4a)

and for body 3

U3=R + Cj

where

are matrices of direction cosines,

c =\ cos0f shift- "I
[-sin ft cosftj

f direction cosines,

|~0 -ftl
y/ = •I /) A II t / / VJ Il_ ' _J

(4b)

•C2
r(L2+M23) + C3

rr3 (5a)

(5b)

1 = 0 , 1 , 2 , 3 (6)

i =0, 1,2,3 (7)

Of (8)

(9)

are skew symmetric angular velocity matrices,

R = [jt() }>o]r, r\ = [xi 0]r, r2 = |

are position vectors, and

MI = [0 Mi]7 , M2 = [0 w2]7

are elastic displacement vectors. Moreover,

Ml2 = M l U , = L , , "23= "21x2=1,2 (10)

The elastic displacements are discretized as follows:

Ui(xi91) = *f(jc/)€/(0, i = 1,2 (11)

where <&,•(*/) are vectors of quasicomparison functions19 and ^/(/)
are vectors of generalized displacements. Regarding the robot
arms as beams in bending, the quasicomparison functions can be
chosen as a linear combination of the admissible functions

= cosh
Xkx Xkx ( \kx . Xkx \—— — cos —— — ak I smh —— — sin —— I

Li LJ V Li /

A: =1 ,2 , . . . (12)
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which represent the eigenfunctions of a clamped-free beam for k
odd and clamped-clamped beam for k even, where A.* and a^ are
nondimensional parameters.

Using Eqs. (2-12), the kinetic energy of the system can be writ-
ten as

1
i dDt = -qTMq (13)

,-=o -/body

where q = [RT 9Q 9\ 92 #3 £[ £^ ]7 *s me configuration vector
and M is the mass matrix with entries given in Appendix A.

The potential energy for the system is due entirely to the elasticity
of the robot arms and can be written in the form

where

K = block-diag[0 K2]

*-fJQ

(14)

(15a)

(15b)

are the robot stiffness matrix and the stiffness matrices for bodies i,
respectively, where in the latter Eli denotes bending stiffnesses.
Note that the gravitational potential is ignored here on the assump-
tion that it represents a second-order effect.

The control forces acting on the robot system include the hori-
zontal and vertical thrusts Fx and Fy acting at the base center, the
external torque M0 acting on the base, the internal joint torques
MI, M2, and M3 acting at the joints, and the distributed inter-
nal moments T\ and r2 generated by m\ and m2 actuators on
links 1 and 2, respectively. We define the control force vector as
F=[FX Fy MO MI M2 M3 r\ rj]r. Then, the virtual work of
the system can be written in the form

8 W = Fx M0 MI (80l -

+ 1*3(863 - 802 - *f (L2) S£2)

where Q is a generalized force vector defined as

(17)

The entries of the matrix G are given in Appendix A.
Lagrange's equations for the system can be expressed in the sym-

bolic vector form

d /ar\ dT sv_( — ) _ — + — — n
dt\3qj dq dq *

(18)

Inserting Eqs. (13), (14), and (16) into Eq. (18), we obtain the system
equations in the matrix form

(19)

The entries of the matrix C are also given in Appendix A.
Equation (19) represents the equation governing the motion of

the flexible space robot. It is used for computer simulation of the
dynamic system. For the purpose of control design, Eq. (19) is con-
veniently separated into two sets of equations, rigid-body motion
equations and elastic vibration equations. To this end, we write
9 = \fr qT

e}T andg = [QT
r Q*]T,whereqr = [*0 ?o #o 0i 02 93]T

is a rigid-body displacement vector, qe = [£[ ^]T is an elastic
displacement vector, and Qr and Qe are corresponding generalized

force vectors. Then Eq. (19) can be written in the partitioned ma-
trix form

crr

* , , , < , , ~ , (2Q)

After some algebraic manipulations, and ignoring higher order terms
in the elastic displacements, Eq. (20) can be separated into

Cr(qr, qr)qr + de(q, q, q) = Qr (21)

and

Me(qr)qe + Ce(qr, qr)qe Ke(qr,qr, qr)qe + dr(qr,qr,qr) = Qe

(22)

where Mr is the rigid-body part of the mass matrix Mrr and Cr is the
rigid-body part of Crr. Moreover, Me = Mee, Ce = Cee, Ke consists
of the stiffness matrix K and the part due to elasticity in the matrices
Mre and Cre,andde anddr are disturbance vectors. The entries of the
various matrices are given in Appendix B. The term de in Eq. (21)
is a linear combination of qe, qe, and qe, with the matrices Mre, Cre,
Ke

M, and Ke
c depending on qr, qr, and qr, as shown in Eq. (B3) of

Appendix B. It can be regarded as a disturbance due to the flexibility
of the robot arms. The term dr in Eq. (22) is a function of qr, qr,
and qr. It can be regarded as a disturbance due to the rigid-body
maneuvering of the robot. Equations (21) and (22) are coupled. The
coupling between rigid-body motions and flexible vibration is pro-
vided in Eq. (22) by the persistent disturbance dr from the rigid-body
motion, which causes the elastic motion qe,qe, and qe. In turn, the
elastic motion disturbs the rigid-body motion through de in Eq. (21).
Equation (21) is used for the design of the maneuver control for
tracking a moving target and Eq. (22) is used for design of control for
vibration suppression.

III. Tracking Control Algorithm Using
Lyapunov-like Methodology

In this section, the general idea of Lyapunov-like methodology
for tracking control developed for rigid robots9 is introduced.

The dynamic equation of a rigid robot is given by

M(q)q + C(q, q)q = Q (23)

and the kinematic relation between the robot configuration vector q
and robot output vector ye is given by

so that

e =f(q)

ye = J(q)q

ye =

(24)

(25a)

(25b)

where J(q) = [df/dq] is the Jacobian matrix.
Because tracking is carried out by the end effector, the track-

ing problem consists of driving the error e ~ yt — ye and its time
derivative e to zero. To this end, a Lyapunov function is defined by

where

v =

z = (e + Pe)

(26a)

(26b)

in which ft is a positive scalar. If the control is designed in such a
way that

V = -trV (27a)

(27b)
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Fig. 3 Bursting phenomenon.

where e is an arbitrarily small positive scalar and VQ is the initial
value of V, it is guaranteed that the function V remains in the e
neighborhood of zero for t > ts, no matter how the target motion
changes. This ensures that the error e and its derivative e are also
very close to zero.

We consider the nonlinear control law

(28)

where ur is chosen in the form9

A =
zTJw if

if
zTJw>8
zTJw < 8

(29a)

(29b)

periods and the length of the "good performance" periods are both
unpredictable. This phenomenon is similar to the so-called bursting,
which appears frequently in discrete-time adaptive systems and has
been reported for almost a decade.20 Due to the complexity of our
space robot, it is difficult to identify clearly the source of the bursting
phenomenon. However, because the phenomenon is not reported in
Ref. 9, in which a nonredundant robot is simulated in discrete time,
we can conjecture that in the case at hand, the phenomenon is related
to robot redundancy. It is important to keep the control force from
bursting. Otherwise the possibility exists that the control cannot be
realized. To this end, a modified version of the above algorithm
is presented, which also takes into account the flexibility of the
robot arms.

IV. Modified Tracking Control Algorithm
for Flexible Space Robots

To apply Lyapunov-like methodology to flexible space robots,
we first extend the kinematical relation given by Eq. (26) to flexible
space robots as follows:

xe = jc0 — LO sin #o + L\ cos 6\ + L2 cos 62

+ L3 cos #3 — uu sin Q\ — w23 sin 62

ye = y() + LO cos 00 + LI sin 0i + L2 sin 02 + L3 sin 03 (31)

+ Mn COS 0i + W23 COS 92

For kinematical analysis, we define q = [qj qT
u}T , where qr was

defined earlier and qu = [u\2 u23]T . The Jacobian matrix 7, ob-
tained by differentiating Eq. (31) with respect to q, has the form
j = [Jr Ju], where

1 0 — Locos0o —Li sin0i — «n cos 0i

0 1 —L0sin00 LI cos0i — M12sin01

0 0 0 0

—L2 sin 02 — w23 cos 02 — L3 sin 03

L2 cos 02 — w23 sin 02 L3 cos 03

0 1
(32a)

in which 8 is a small positive scalar, w is an arbitrarily chosen vector,
and

hi = zT(yt- (30a)

(30b)

It can be shown that the control algorithm described above yields
the desired result, i.e., Eqs. (27a) and (27b).

The control algorithm possesses the following advantages:
1) The control decision is made using on-line information of the

current robot state (q, q) and target state (e, e, andyt). The feedback
control can automatically counteract adverse disturbances in space
and achieve the final docking in an accurate and smooth way.

2) The on-line calculation is relatively simple, as it involves nei-
ther inverse kinematics nor matrix inversions.

3) Stability is always guaranteed by Lyapunov stability theorem,
as can be seen from Eqs. (27), no matter how the target motion
changes.

However, after applying the above algorithm directly to our space
robot system and simulating the system in both continuous time
and discrete time, the results from a discrete-time system exhibited
some undesirable phenomenon, although the performance of the
continuous system was good. As shown in Fig. 3, in which the solid
line denotes continuous-time results and the dashed line denotes
discrete-time results, the control force in discrete time exhibits pe-
riods of oscillatory behavior. Further numerical simulations show
that the magnitude of the control force during chattering is bounded,
although very large, and its mean value is close to the results of the
corresponding continuous-time system. Moreover, the occurrence
of the oscillating period is random, and the length of the oscillating

— sin 0i — sin 02

cos 0i cos 02

0 0

Hence, we can write the relations

ye = Jq + Jij

(32b)

(33a)

(33b)

The dynamical equation for the rigid-body motion of the space
robot is given by Eq. (21). We first define a nonlinear control law
for Qr as follows:

Qr = Mr(qr)ur + Cr(qr,qr)

Substituting Eq. (34) into Eq. (21), we obtain

qr = ur - M~lde

(34)

(35)

To prevent the bursting phenomenon, we propose decoupled
Lyapunov functions

Zj =

i = 1,2,3

i = 1,2,3

(36a)

(36b)

Taking the derivative of Eq. (36a) and using Eqs. (33) and (35),
we obtain

Vi = zihi - Zi([JrUr]i - [JrM^d,].), i = 1, 2, 3 (37)
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where [•]/ denotes the ith element of a vector and ht are the compo-
nents of the vector

h = yt - Jq + fie - Juqu (38)

Because Mr is a positive definite matrix, Mr
 l is bounded, and we

note that Jr is also bounded. Moreover, from Eq. (B3) in Appendix
B, we see that de is a linear combination of qe, qe, and qe. We
then assume that de is bounded in accordance with our ultimate
goal of vibration suppression. Hence, we can assume that the term
[JrM~lde]i is bounded and satisfies the relation

[jrM-lde].<8i, i = l ,2,3 (39)

From Eq. (39), we have

Zi[JrM-lde]. < \zt\8i, i = 1, 2, 3 (40)

If we can determine a vector ur that satisfies the conditions

Zi[JrUr]i = Zihi + \UiZ] + \Zi\8i, I - 1, 2, 3 (41)

then

i = 1,2,3 (42)

According to the Lyapunov stability theorem, Eq. (41) is the
sufficient condition for our tracking problem. We further simplify
Eq. (41) by assuming zi ^ 0, so that

i = l ,2 ,3

or

with

[JrUr]i =Si, i = l ,2 ,3

(43)

(44)

si = yn ~ U9\i + Pet - [Juqu\i + \otiZi + sgnfe)S/ (45)

Equation (44) can be expressed in the matrix form

Jrur=s (46)

where s = [s\ s2 s3]T and Jr is a 3 x 6 matrix. The solution of
Eq. (46) does not yield a unique ur. This agrees with Eq. (29) in the
original control scheme in which w is an arbitrarily chosen vector.
Here we can simply prescribe the redundant degrees of freedom and
then solve Eq. (46) accordingly.

As a simple example, we constrain three components of ur
by taking

Ur3 = ur4 = ur5 = Q (47)

for the entire tracking period and use Eq. (46) to solve for the other
three components of ur on-line, with the result

ur\ = s\ -f- L3 sin#3Mr6, ur2 = s2 — L3 cos#3wr6,

ur6 = s3 (48)

The above algorithm for ur, together with Eq. (34), represents the
maneuver control for a flexible space robot tracking a moving target
whose motion is not known a priori. The control algorithm requires
that the following conditions be satisfied:

1) The output error vector e and its time derivative e can be
measured on-line.

2) The target output acceleration yt can be measured or estimated
on-line.

3) The robot rigid-body displacement vector qr and its time
derivative qr can be measured on-line.

4) The elastic tip displacement vector qu and its time derivatives
qu and qu can be measured on-line.

5) The elastic vibration of the robot arms should be controlled so
that a reasonable value for the upper bound <$/ can be set.

In addition to the advantages of the original algorithm mentioned
in Sec. Ill, the modified control algorithm presented here provides
two extensions from the original one.9 The first extension is that the
flexible effect of the robot arms is incorporated into the control algo-
rithm. It is reflected in the kinematic relations expressed by Eqs. (31)
and in the term sgnfe)5/ in Eq. (45), which is associated with the
vibration disturbance vector de in Eq. (21). The second extension
consists of the use of decoupled Lyapunov functions [Eqs. (36)]
to eliminate the bursting phenomenon (Sec. Ill) when the control
algorithm is implemented in discrete time.

V. Vibration Control
Because of coupling between the rigid-body motions and the

elastic vibration, the performance of the tracking control depends on
how well the vibration suppression is carried out. Without vibration
control, the tracking cannot be truly realized for a flexible space
robot. Our objective is to drive the elastic motion state qe, qe close
to zero during the tracking and docking operation. We recall that
the motion of the elastic vibration of the space robot is described
by Eq. (22), which represents a linear time-varying system with a
persistent disturbance term dr due to the rigid-body motions.

We propose to control the vibration in discrete time. To this end,
we separate the generalized control force Qe into

The discrete-time control algorithm for disturbance compensation
is expressed by

Qer (k) = dr (qr (k), qr (k), qr (k)) (50)

If the disturbance is canceled perfectly, Eq. (24) becomes

Me(qr)qe + Ce(qrt qr)qe + Ke(qr,qr,qr)qe = Qee (51)

Letting x(k) = [qe(k)T qe(k)T]T be the state vector and u(k) =
Qee (k) the control vector, the discrete-time state space counterpart
of Eq. (51) can be written as

x(k + 1) = A(k)x(k) + B(k)u(k)

where the coefficient matrices are given by

A(k) = eA(kT)

B(k) = (eA(kT) - I)AT(kT)B(kT)

in which

A /^.\ I

M~lKe -M-lCe

(52)

(53a)

(53b)

(54a)

(54b)

The performance index for the discrete-time LQR is given by21

)+uT(k)Ru(k)] (55)
*=o

yielding the control law

u(k) = -[R + B(k)K(k)B(k)TlBT(k)k(k)A(k)x(k) (56)

where K(k) satisfies the discrete-time algebraic Riccati equation

K(k) = AT(k)[K(k) - K(k)B(k)[R + BT(k)K(k)B(k)rl

x B T ( k ) K ( k ) ] A ( k ) + Q (57)

Direct application of the discrete-time control algorithm described
by Eqs. (50) and (56) to our problem causes severe instability. The
reason is that the discrete-time control force Qer in Eq. (50) is not
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able to cancel the continuous disturbance term dr in Eq. (22) per-
fectly. Hence, the LQR control design based on Eq. (51), in which
the disturbance is absent, is no longer appropriate. The error accu-
mulates with time and it finally results in instability. To resolve this
problem, a modified vibration control algorithm is proposed in the
next section.

VI. Modified Discrete-Time Vibration
Control Algorithm

An examination of the disturbance term dr in Eq. (B14) of Ap-
pendix B, i.e., an examination of

Cerqr (58)

reveals that qr in the first term is the major cause of the system
instability. Usually qr (k) is not available and qr (k - 1) is used as an
estimate of qr (k). Stable performance of the system can be achieved
only if qr (k) can be measured or estimated perfectly. Even a very
small error in qr appearing in Eq. (58) can result in failure of the
LQR design. To avoid use of qr in Eq. (58), we replace qr by w r , so
that the disturbance compensation scheme becomes

Qer(*)=dr(qr(k)tqr(k)tur(Kfi

= Mje (qr (k))ur (k) + Cer (qr (k) , qr (k))qr (k) (59)

where ur (k) is calculated by the tracking control algorithm given by
Eq. (46). We then substitute Eqs. (58), (59), and (35) into Eq. (22)
and obtain the system equation as follows:

Me(qr)qe + Ce(qr,qr)qe + Ke(qr, qr,qr)qe - e = Qee

(60)

As shown in Appendix B, de can be expressed as

de = Mreqe + Creqe + (Ke
M + Ke

c)qe (61)

where Ke
M and Af£ are given by Eqs. (B6) and (B8), respectively.

Substituting Eq. (61) into Eq. (60), we obtain the modified linear
time-vary ing system

M* (Qr)qe + C* (qr, qr)qe + K* (qr, qr, qr )qe = Qee (62)

where, comparing Eqs. (56) and (67), we observe that matrices M*,
C*, and AT* represent modified coefficient matrices given by

K* = Ke - M?eM~l (Ke
M + K£) (63c)

Based on Eqs. (62) and (63), we can follow the same procedure as
in Sec. V and obtain the control law for Qee. The simulation results
using the modified control scheme showed stable performance. Fur-
ther numerical simulations showed that, even in the case of a system
with only the mass matrix Me modified, i.e., a system described by

M*(qr)qe + Ce(qr, qr)qe + Ke(qr, qr, qr)qe = Qee (64)

the LQR control law is still able to produce good system perfor-
mance. This is because the first term on the right side of Eq. (61)
is dominant, so that using Ce and Ke instead of C* and AT*, re-
spectively, is equivalent to dropping the second and third terms in
Eq. (61), which does not affect the system performance very much.
Note that the control gains are time varying, so that they must be
updated repeatedly.

VII. Numerical Example
We assume that the parameters for the flexible space robot shown

in Fig. 1 have the values

m0 = 40.0kg, mi = m2 = 10.0kg, w 3=2.0kg

L0 = 2.5m, LI = L2 = 10.0m, L3 = 2.0 m

Sx = Sy = Q, Ix =83.333 kg m2 (65)

Iy = 333.333 kg m2, Eh = EI2 = 104 kg m2

The target motion is not known a priori and must be measured
on-line. However, for simulation purposes, we choose an example
target trajectory as follows:

/ \ /
xt(t) = 10.0 sin (~tl y, (*) = 10.0+10.0 sin (-^

0t(t) = —t, t e [0,5.0s]

The initial conditions of the space robot are given by

fr(0) = [0.0 -15.0 0.0 0.57T 0.47757T 0.25jr]r

tfr(0) = 0 (67)

(66)

The parameters of the control synthesis design are

0 = 20.0, e-10~3 , ts = 2.5s, 8t=2Q

i = l , 2 ,3 (68)

We designate the three redundant degrees of freedom in ur as wr3,
w r4, and wr5. They are defined for two different cases as follows:

Case 1:

Wr3 = "r4 = "r5 = 0, < 5 s

Case 2:

ur3 =

ur4 =

o,
4A00A2,
-4A0oA2,
0,

o,
4A0!/r2,
-4A0!/r2,
0,

0,
4A02/r2 ,
-4A02A2,
0,

^00 = 7T/6 rad, L

t
0 <
tf/2

t

t
0 <
tf/2

t

i
0 <
tf/2

t

\9{ =

< o
t < t f / 2
< t <tf

>tf

<o
t < tf/2
< t <tf

>tf

' <0
t < tf/2
<t<tf

>tf

7T/4 rad, and

(69)

(70a)

(70b)

(70c)

where tf — 4.0 s, A00 =
—7T/6 rad.

For a rigid space robot, Eqs. (69) and (70) represent constraints
on the acceleration of the robot configuration. In case 1, the mission
amounts to keeping the base attitude #o and the two joint angles 9\
and 62 constant while tracking a moving target. In case 2, the mis-
sion implies bang-bang maneuvers involving a base attitude change
of A#o and arms angle changes of A0i and A#2 while tracking a
moving target.

The constraints cannot be realized perfectly for a flexible space
robot due to disturbance-causing vibration. However, the perfor-
mance can be improved by vibration control. Because the major
objective here is to track the moving target, we use the constraint
equations (69) and (70) to eliminate the robot redundancy.
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a) Case 1

b) Case 2

Fig. 4 Time-lapse picture of robot configuration.

Note that to prevent chattering in simulations sgn(z) in Eq. (45)
was replaced by

sat(z) =
_ f sgn(z) for

( z f o r
\z\ >
Z < 6

(71)

where € is a small positive number.
For vibration control, the LQR design parameters are chosen as

R = diag[/nxn /nxi,]

2 - diag[2.0 x W4Inxn W4Inxn 2.0 x \Q4Inxn I04lnxn] (72)

The elastic displacement for each of the two arms was modeled by
means of five quasicomparison functions.19

The elastic deformations are controlled by means of five col-
located actuator/sensor pairs, so that m/ = 5 and *// = 0'/5)L/
(i = 1, 2, j = 1, 2 , . . . , 5). The control forces generated by these

o
-o.i
-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

t(s)

3

2.5 H i

1.5

1

0.5

~0 1 2 3 4 5

t(s)

Fig. 5 Time history of orientation error and orientation error rate:
case 2.

t(s)

Fig. 6 Time history of tip elastic displacement of first flexible body.

actuators are transformed into generalized control forces by
means of Eq. (17), with the matrix G being given by
Eqs. (A7) and (A8). Of course, the sensor measurements M;(JC//, t)
(i — 1, 2, j = 1, 2 , . . . , 5) are related to the generalized elastic dis-
placement vectors £ f(f) (i = 1, 2) through Eq. (11).

The system performance under the tracking and docking maneu-
ver is simulated over 5 s. To this end, the tracking control algorithm
presented in Sec. IV and the vibration control algorithm presented
in Sec. VI are used. The simulation is performed in discrete time
with a sampling period T = 0.001 s.

Figures 4a and 4b show time-lapse pictures of the robot config-
uration for cases 1 and 2, respectively. For case 2, time histories
of the orientation tracking error e(3) and its time derivative e(3)
are shown in Fig. 5, the time history of the tip elastic displace-
ment of the first flexible link is shown in Fig. 6, and time histo-
ries of the control force Fx and torques MO and M^ for the rigid-
body maneuver are displayed in Figs. 7a-7c. Time histories of the
control torque r2(3) acting on the second flexible body for distur-
bance rejection and LQR. control are shown in Figs. 8 and 9, respec-
tively. The results are very satisfactory, with control achieved in less
than 1 s.
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rejection.

VIII. Summary and Conclusions
This paper is concerned with the control of a flexible space

robot executing a docking maneuver with a target whose motion
is not known a priori. The control is based on on-line measure-
ments of the target motion. The dynamical equations of the space
robot are first derived by means of Lagrange's equations and then
separated into two coupled sets of equations suitable for rigid-
body maneuvers and vibration suppression. Controls for the rigid-
body maneuver and vibration suppression are developed and im-
plemented in discrete time. Problems arising from digital imple-
mentation of the control algorithms are discussed. Then, modi-
fications of the control algorithms so as to prevent the problems
are made.

The control scheme presented can be applied to two-dimensional
as well as three-dimensional problems. Furthermore, it has the flex-
ibility of solving different problems by defining appropriate output
vectors other than the end-effector output vector. For example, if
the mission involves tracking and docking with an orbiting target
while its base attitude is to be kept constant, we can define the out-
put vector as ye = [xe ye 6e OO]T and the target output vector as
yt = [xt yt Ot 0]r, and then the proposed tracking control algo-
rithm can be used to drive the error vector e = yt — ye and its time
derivative e to zero.

A numerical example is used to demonstrate the control scheme.
The simulation results have shown very good system performance
in both the tracking maneuver and the vibration suppression.

Appendix A: Matrices in Equations of Motion
The mass matrix M appearing in Eq. (14), as well as in Eq. (21),

is defined as

M =

m

MO

with

Mo-

.Wig, . . . , /

0
mt

a2

m77

m78

-Stx a\
— Sty «3

I to a5

a5 /!

(Al)

S3c3

h J

(A2)



764 CHEN AND MEIROVITCH

in which

03 =

02 = -

04 = St2C2 ~ ®t2

a5 =

(A3)

and

m61 =

HI68 =

(A4)

m77 = (m2

m88 =

and we note that s-/ = sin ft-, c/ = cos ft , 5/7- = sin (ft — 0;-), and
Cj7- = cos (ft — 07-) . Moreover, we have used the following definitions:

w, = m0 + mi + m2 + ra3

5/JC = 5^ sin ft) + S^ cos 00 + (m! + m2 + m3)L0 cos 00

5^ = — Sfo cos 00 + SQy sin 00 + (mi + w2 + m3)L0 sin 00

5fl = 5i + (m2 + m3)Li, 5f2 = 52 + m3L2 (A5)

/ro = !QX + V + (mi + m2 + m3)LQ

In = /i + (m2 + m3)L^, 7,2 = 72

in which

i =0, 1,2,3

/bodyO

m/ = / A d A,
•/body/

t/body/ «/body/

5ox = / A)JC d£>o, S0y = I
•/bodyO Jb(

/<k = I
" = /" " = /"

•/body/ t/body/

= f 7

^bodyi

i = l ,2,3

>0jc2dA), V = f Po/dDo (A6)
bodyO AodyO

dDf
body/

i = 1,2

The matrix

G--

Gin

-i o
0 1
0 0
0 0
0 0
0 0
0 0

.0 0

0
0
1
0
0
0
0
0

Eq.

-

(19) is defined as

0
0
1
1
0
0

0
0
0

-1
1
0

0 -$i(Li)
0

0 Or Or

0 Or Or

0 O7 O7

1 O7 O7

1 O7 O7

0 G! 0
0 -*2(L2) 0 G2

-1

(A7)

-

where primes denote spatial derivatives and

G i = [* '(*/!) . . . *?(*„)] ' i = 1,2 (A8)

in which m is the number of actuators on each link. Here m is equal
to the number of modes and G, are square matrices.

The coefficient matrix C in Eq. (21) is defined as

C =

- 0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

Ci3

C23

0
C43

C53

C63

C73

C83

CM

C24

C34

0
C54

C(A

C74

C%4

Cis
C25

C35

C45

0
C65

C75

C85

Cifi

C26

C36

C46

C56

0
C76

C86

Cn C18"
C27 C28

C37 Qs

C47 C48

Q? C5z

C$1 Cft%

0 C78

C87 0 _

(A9)

where

- (-StlCl

= -53c303

C18 = -2

C23 - -Stx6Q C24 = (-StlSl - i

C25 - (-5t2j2 - *^2c2)02, C26 - -

C27 - -2^5101, C28 - -2^^2

C34 = St

C36 = C37 = 23>,1

C38 - 2.

C47 - 2{[(Ai + (m2

C48 - 2-L1521*T
2 (A10)
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C54 = «S,

C56 = (~S3L2S32

C57 = 2(S,2521$[2

C58 =

C65 =

C68 =

C74 = -[

C75 = (-

C76 - -S3s31$

C83 = -$,

C85 = ~(A2

C73 = -$,

(m2

C78 = -

C86 = -

C87 =

Appendix B: Matrices in Partitioned
Equations of Motion

The mass matrix Mr and the coefficient matrix Cr in Eq. (23) are
defined as

Mr =

mt 0 -Stx -Stisi -St2s2 -
0 mt -Sty Stici St2c2

— Stx —Sty IfQ St \LQS\Q St2LQS2Q

-St2s2 St2c2 St2L0s2(} It2 S3L2c32

/3 j

(Bl)

Cr =

0 0 Sty9() —St\c\9i —Sf2c292 —S3c393

0 0 —Stx9® —^i^i^i —S f 2 s 2 9 2 —S3s393

0 0 0 St\L,QC\QO\ S(2LQC2Q92 iS3Z/oC3()03

0 0 —.Sfi.L()Cio0o 0 —S t2L\s2i92 —S3L\s3\93

0 0 —ot2L§c2Q\?Q ^t2L\s2i9i 0 —^3*-'2>^3203
_0 0 -S3L0c3o0o ^3^1^3101 S3L2s3292 0

(B2)

The disturbance vector de in Eq. (23) is defined as

de = Mreqe + Creqe + (Ke
M + Ke

c)qe (B3)

where

Mre =
m21

(B4)

i 2$[2S3s31<91

(B5)

Moreover,

3>tlL
km

^535326*2 J

(B6)

in which

= r x ..

and

*r.s A0 i7

^T7

(B7)

*C1

(B8)

in which

(B9)
A:C2 =

The mass matrix Me and the coefficient matrix Ce are defined as

• ( m 2 -
Me =

T ~ ̂  ~l

T *^c ^ '2 A '1 TV

- r • "1
—23>i2 <P,2S2102

21^1 0 J

and the coefficient matrix Ke is defined as

Ke = K + KM + /

where
" 0K = o

r r
^M = I

I O.--
L ^

(BIO)

(BID

(B12)

(B13)

(B14)

and

r-K (m2

-(A2

(B15)
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The disturbance vector dr is defined as

dr = M?eqr + Cerqr

where Mre is given by Eq. (B4) and

cer =

0 0 -*,2LoC2000 ^,2LlS2A 0

(B16)

-$23^3203

(B17)
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